11. OPTIMISATION USING OPIC

INTRODUCTION

Note: The first part of this tutorial is essentially copied from the document "Optimization Tutorial using OSLO Light," which is available as a free PDF download from the Lambda Research Corporation web site at the following URL: http://www.lambdares.com/technical_support/oslo/tutorials/
It is recommended that the section "Lens Entry" is followed using both documents in parallel. The steps numbered 1 to 16 below correspond to steps 1-16 in the tutorial.

The customer requirement may be summarised as follows: A triplet objective is required, of focal length 10 millimetres, and a field of view of $40^{\circ}\left(\pm 20^{\circ}\right)$, which will have an aperture ratio of $\mathrm{f} / 2.8$. Vignetting is permitted, with up to 50% brightness reduction at the extreme field of view. The MTF must be greater than 0.4 at 40 lines $/ \mathrm{mm}$ everywhere in the field. Distortion must be less than 1%.

LENS ENTRY

1. Using any version of OSLO

(including EDU) open the lens in the public directory:
C:ProgramFiles\OSLOIEDU64|publicllenldemoledul with the file name demotrip.len

Save it in a newly created private directory:
C:ProgramFilesIOSLOIEDU64|
 privatellenIEDU_Tutorial with the same file name.
2. If it is not open already, open the surface data spreadsheet by clicking on the blue lens icon in the main window toolbar.[Ise]
3. Scale the lens to focal length 10 mm by right-clicking on any surface number button, and selecting Scale Lens Scale to

New Focal Length \downarrow Enter scaled focal length: 10.0. [sle to 10.0]

4. Change the entrance beam radius from its current value giving an f-number of $f / 4$ to give an f -number of $\mathrm{f} / 2.8$ [ebr 1.785714]
5. Verify the f-number using the text window header Pxc. [pxc]

6. Increase the aperture radii of all surfaces 1 to 6 to 1.8 [ap 1 1.8] [ap 2 1.8].. [ap 6 1.8]
7. Increase the thickness of the first
 element to 0.7 mm , of the second element to 0.3 mm , and of the third element to 0.7 mm . [th 10.7], [th 30.3], [th 50.7]

8. Adjust the radius of surface 6 to restore the focal length to 10 mm using the following method:

Right-click on the grey RADIUS button for surface number 6, and select Solves(S) - Axial ray angle ... Enter solve
value: $\quad \mathbf{- 0 . 1 7 8 5 7 1 4}$ (note that this is -0.1 times the entrance beam radius)

9. Remove the curvature solve on surface 6: Click on the grey RADIUS button for surface 6, and select Direct specification The "S" should vanish. [pu $=0.1785714$;csd 6 or rd $6-3.491632$]
10. Verify the effective focal length is 10 mm using the command Pxc.
11. Change the title to Demo Triplet 10 mm f/2.8 20deg.

Gen	Setup	Wavelengths	Variables	Draw	On Group	Notes	人
Lens: Demo Triplet $10 \mathrm{~mm} \mathrm{f} / 2.8 \mathrm{l}$ 20deg					Ef1	10.000000	
Ent beam radius		1.785695 Field an	20	000	Primary wav1n	0.587560	
SRF	RADIUS	THICKNESS	\triangle PERTURERA	ADIUS	GLASS	SPECIAL	
OBJ	0.000000	$2.0000 \mathrm{e}+19$	$7.2793 \mathrm{e}+18$		AIR		
1	4.249954	0.700000	1.800000	K	SK16 C		
2	-31.729657	1.199987	1.800000	P	AIR		
3	-4.049956	0.300000	1.800000		F4 C		
AST	3.859958	1.199987	1.800000	A	AIR		
5	28.249694	0.700000	1.800000		SK16 C		
6	-3.491631	8.589907	1.800000	K	AIR		
IMS	0.000000	0.000000	3.798090	5			\checkmark

and save the lens as Triplet10mm_Start.len in the directory C:ProgramFiles\OSLOIEDU64|privatellenlEDU_Tutorial.
12. Open the variables data editor: click on the button labelled Variables in the lens data editor. [vse]

13. Click on Vary all curvatures. Click on Vary all air spaces.
14. Close the variables spreadsheet with the green tick:

Accept pending entry/Close spreadsheet
15. Using the text window header command Var, check that there are now 9 variables. [var]

TW 1 *								
㽧 Len Spe Rin Ape Wav Pxc Abr Mrg Chf Tra Sop Ref Fan Spd Auf Var Ope Ile Slv Pkp Ape Pxs Pxt Chr Sei Fif Ref bot chf top skw								
\#VARIABLES								
VB	SN	CF	TYP	MIN	MAX	DAMPINd	INCR	Value
V 1	1	-	CV	--	--	1.000000	5.6001e-05	0.235297
$\vee 2$	2	-	CV	--	--	1.000000	5.6001e-05	-0.031516
$\vee 3$	3	-	CV	--	--	1.000000	5.6001e-05	-0.246916
V 4	4	-	CV	--	--	1.000000	5.6001e-05	0.259070
$\vee 5$	5	-	CV	--	--	1.000000	5.6001e-05	0.035399
V 6	6	-	CV	--	--	1.000000	5.6001e-05	-0.286399
$\vee 7$	2	-	TH	0.100000	$1.0000 \mathrm{e}+04$	1.000000	0.000179	1.199987
V 8	4	-		0.100000	$1.0000 \mathrm{e}+04$	1.000000	0.000179	1.199987
V 9	6	-	TH	0.100000	$1.0000 \mathrm{e}+04$	1.000000	0.000179	8.589907

The surface data spreadsheet should have the following appearance, with a V against each variable parameter:

16. Save the lens again by clicking on the icon in the main window header. [save]

This completes the section duplicated in the document "Optimization Tutorial using OSLO Light."

OPTIMISATION USING THE OPIC ERROR FUNCTION

17. Type the command opic in the command line. If the error message Input error: Unrecognized word 'opic' appears, the command has not been installed and compiled - see Appendix 1.

Note the message in the text window. The "Vignetting factors" on the second line are the (relative) values of ymin, ymax and $\mathbf{x m a x}$ for the two off-axis points, at (relative) field heights of 0.7 and 1.0 respectively. These figures will be used to set the rays drawn in the lens drawing conditions spreadsheet (see below).
18. Click on the text window header Ope to list the operands [ope]

19.Click on the RIC (ray intercept coordinate) report graphics icon in the graphics window to get the ray trace results for
 the lens. The left-hand part of the diagram is shown below.

The black bars on the diagram illustrate the transverse aberrrations which are controlled by the OPIC error function. Also the name of each operand is shown. For example, the 19th operand listed above has the name M_T_DY. This refers to:

- M the field point FBY $=0.7$ (mid-field)
- T the top of the pupil ($\mathrm{Y}=+1$)
- DY the transverse aberrration in the Y direction.
In the diagram here it is represented by the bar labelled MT.

20. Scroll down to the bottom of the list of operands to find the starting error function.
21.Optimise ("iterate") 10 times by clicking once on the text window header Ite once [ilte]

No further improvement is necessary.
22. Save as Triplet10mm_final.Ien in the same directory as before.

DRAWING THE FINAL DESIGN

23. From the Lens menu header and select Lens Drawing

Conditions ...- [uoc drl] In the spreadsheet:

- After Number of field points for ray fans: enter 4.
- Under the column Frac Y Obj type $\mathbf{1 . 0}$ in the fourth row.
- Under the column Rays type 2 in the second row, 2 in the third row and 1 in the fourth row.
- Under the column Min Pupil, type -0.65 in the second row, $\mathbf{- 0 . 5}$ in the third row. These are the values of ymin for object heights 0.7 and 1 generated by the call of opic described in section 17 above).
- Under the column Max Pupil, type in the ymax values, 0.9 in the second row, 0.75 in the third row.
- Close with the green tick:

24. Draw the lens:

- From the Lens menu header select Lens Drawing

System

- Accepting all the defaults, click on

```
OK
```

Note the ray colour sequence for the four ray fans is green, blue, red, light blue.
25.Save the lens again to preserve these ray drawings.

EVALUATING THE FINAL DESIGN

MODULATION TRANSFER FUNCTION

This is the most important measure of resolution used in lens design. The modulation transfer function is reduced by aberrations, but the "ideal" MTF is the MTF of a perfect system of the same aperture and wavelength, which represents the upper limit of what can be achieved the so-called diffraction limit. The ideal MTF becomes zero at a spatial frequency known as the diffraction limit.
26.Calculate the cut-off spatial frequency at the image using the formula:

Maximum frequency $=2$ * numerical aperture/wavelength
Use the central (first) wavelength in this calculation (click on the text window header Pxc to find the image space numerical aperture, and on the header Wav to find the wavelength in microns). The answer should be 606 cycles per mm.

27.From the Evaluate menu header select Transfer function

Through frequency report graphic ... and enter the figure calculated (606.0) in the box labelled Maximum frequency.

Click on OK

This gives a plot of the MTF out to the diffraction limit. [rpt_tfr 606.0]
28. Plot the same diagram out to a frequency of only 40 cycles $/ \mathrm{mm}$. Note that the MTF is above 0.5 (all curves) at 40 cycles/mm. [rpt_tfr 40.0]

VIGNETTING

Vignetting is the measure of the fall-off in brightness towards the edge of the field, relative to the centre, and is calculated very easily with OSLO EDU.
29. To define the object point at full field, in the command window type: sop 100
30. To calculate the amount of vignetting at this field point, in the command window type spd

```
*SET OBJECT POINT
    FBY FBX FBZ
    1.000000
        FYRF
            F--
            Y FX
    MC MC 
*SPOT DIAGRAM - FBY 1.00, FBX 0.00, FBZ 0.00 - POLYCHROMATIC
    APDIV 17.030000
    WAV WEIGHTS:
            WW1 WW2 WW3
        1.0000000 1.000000 1.000000
    NUMBER OF RAYS TRACED:
        WV1 WV2 WV3
        136 136 136
    PER CENT WEIGHTED RAY TRANSMISSION: 58.620690
*SPOT SIZES
    GEO RMS Y GEO RMS X GEO RMS R DIFFR LIMIT CENTY CENTX
*WAVEFRONT RS
    WAVELENGTH 1
        MrVNL OPD 
```

31. Note the "Per cent weighted ray transmission" value of 58.6\%. Hence the brightness reduction is 41.4% at the extreme edge of the field.

DISTORTION

32.From the Evaluate menu header select Other ray analysis Report graphic ... and accept all the defaults.

33. The graph of distortion is near the middle of the window. Note that in this case the distortion is less than 0.3% everywhere in the field. [rpt_ric ray 0000$]$

It may be concluded that the nominal design of this lens meets all the requirements of the
 customer specification by some margin. For the next stage of the design, the calculation of tolerances, this margin is used in the calculation, so that the lenses delivered in production all meet the customer requirement.

LENS PRESCRIPTION

The prescription of this lens is listed by clicking on the commands Len and Pxc in the text window: [len;pxc]

*LENS DATA							
Demo Triplet 10mm f/2.8 20deg							
SRF	RADIUS		THICKNESS	APERTURE R	RADIUS	GLASS	SPE
NOTE							
OBJ	--		2.0000e+19	7.2793e+18		AIR	
1	4.052520	V	0.700000	1.80000	00 K	SK16	C
2	-228.402737	V	1.141096 V	1.80000	P	AIR	
3	-6.145935	V	0.300000	1.80000		F4	C
AST	3.857846	V	1.231107 V	1.80000	00 A	AIR	
5	13.439422	V	0.700000	1.80000		SK16	C
6	-4.807852	V	7.824421 V	1.80000	00 K	AIR	
IMS	--		--	3.63352	24 S		
*PARAXIAL CONSTANTS							
Effective focal len			th: 10.035628	Lateral ma	agnification:	-5.01	179e-19
Numerical aperture:			0.177937	Gaussian i	image height:		. 652670
Working F-number:			2.809983	Petzval ra	adius:		. 067815
Lagrange invariant:			-0.649945				

Note: In this document, OSLO commands equivalent to the entries described are included in this typeface.

APPENDICES

1. COPYING AND COMPILING OPIC

- On the CD provided, open the directory CCL
- Copy the file optim_ic_EDU.ccl to the directory C:ProgramFilesIOSLOIEDU64|privatelccII
Take care: Store the file in the Private CCL directory, not in a subdirectory. The file extension must remain .ccl
- Close the internet browser and open OSLO EDU.
- Either, in the command window, type: ccl, or, from the menu header Tools select Compile CCL ... and click on the green tick three times, accepting the default each time, to compile all private CCL files.
- If the message in the text window reads: *CCL COMPILATION MESSAGES: No errors detected then compilation is successful.
- If error messages appear in the text window such as:
*CCL COMPILATION MESSAGES:
optim_ic_edu.ccl 8: Name 'colour_weight' has already been declared optim_ic_edu.ccl 133: Duplicate procedure definition optim_ic_edu.ccl 385: Duplicate procedure definition
then the opic command appears in a file already stored in this directory. The old file needs to be either deleted, or have its name changed to (for example) optim_ic_edu_old.ccx (The .ccx extension is a signal that the file is not to be compiled).
- If any editing is needed, from the menu header, select Window Editor - Open and open optim_ic_EDU.ccl. If you save from this editor, compilation takes place automatically.
- Open any lens, and in the command window, type: opic. A message like the following should appear in the text window to indicate that all is working well:
opic: Operands defined for focal system with colour weight 1.00
EDU Vignetting factors ymin ymax xmax ymin ymax xmax for FBY = 0.7, 1.0: -0.60 $0.80 \quad 0.95,-0.40 \quad 0.60 \quad 0.80$

2. OPIC DOCUMENTATION

The following documentation is contained within the optim_ic_EDU.ccl file:

OPIC for OSLO EDU

Generates an error function based on those developed in the 1970s at Imperial College, London by Charles Wynne, Pru Wormell, Mike Kidger and others. This version is intended primarily for users of OSLO LT, OSLO EDU or OSLO Light, but will work with all versions of OSLO.

The command calculates vignetting, and then defines an optimisation error function with 50 operands.

The optimisation error function consists of the weighted sum of the following operands:

Four paraxial ray quantities:
$1 \quad$ PY Height of the paraxial axial marginal ray at the image
$2 \quad$ PU Angle of this ray in the image space
3 PYC Height of the paraxial pupil (chief) ray at the image
4 PUC Angle of this ray in the image space
Two first order chromatic coefficients for wavelengths 2 and 3:
$5 \quad$ PAC Primary axial (longitudinal) chromatic focal shift
$6 \quad$ PLC Primary lateral chromatic aberration
Two first order chromatic coefficients for wavelengths 1 and 2:
$7 \quad$ SAC Secondary axial (longitudinal) chromatic focal shift
8 SLC Secondary lateral chromatic aberration
Two geometrical optics parameters:
$9 \quad$ OALL The overall lens length (from srf 1 to srf IMS-1)
10 For focal systems, the equivalent focal length EFL;
for afocal systems, the paraxial angular magnification AMAG.
A user-defined operand:
11 User: A spare parameter for user-defined operands programmed by the user within optim_ic_EDU.ccl. The routine is supplied with the mean RMS spot radius for the field points $\mathrm{FBY}=0.0,0.7,1.0$ as an example.

The remaining aberrations are those of finite rays:
For focal systems, all monochromatic ray aberrations are linear (DX, DY etc). For afocal systems they are angular (DXA, DYA etc) expressed as direction tangents - e.g YA=L/M or tan(YANG).

Colour aberrations (COL) are optical path differences between wavelengths 2 and 3, known as the "Conrady D minus d" - or DMD - see Welford WT: Aberrations of Optical Systems (Adam Hilger 1986) p 202.

For the axial object point (FBY = 0):

12	A_DY the aberration of the marginal ray $F Y=1.0)$.
13	A_COL The chromatic optical path difference of this ray
14	$\mathbf{A} \mathbf{Z} \mathbf{Z} \mathbf{D Y F o r}$ the axial object point, the zonal ray $(F Y=0.7)$
15	$\mathbf{A} \mathbf{Z} \mathbf{Z} \mathbf{C O L}$ The chromatic optical path difference of this ray

For the first off-axis image point (FBY = 0.7):
$16 \quad$ M_XFS The paraxial sagittal focal shift of the pupil ray.
17 M_YFS The paraxial tangential focal shift of the pupil ray.
18 M_DIST\% The percentage distortion at the 0.7 field
$19 \mathbf{M}_{\mathbf{-}} \mathbf{T} \mathbf{D Y}$ The aberration of the top marginal ray ($\mathrm{FY}=+1.0$)
$20 \mathbf{M}_{\mathbf{T}} \mathbf{T} \mathbf{C O L}$ The chromatic optical path difference of this ray
21 M_TZ_DY The aberration of the top zonal ray ($\mathrm{FY}=+0.7$)
$22 \mathbf{M}_{\mathbf{T}} \mathbf{T Z} \mathbf{C O L}$ The chromatic optical path difference of this ray
$23 \mathbf{M}$ _BZ_DY The aberration of the bottom zonal ray ($F Y=-0.7$)
$24 \mathbf{M}_{\mathbf{B Z}} \mathbf{B Z O L}$ The chromatic optical path difference of this ray
25 M_B_DY The aberration of the bottom marginal ray (FY = -1.0)
26 M_B_COL The chromatic optical path difference of this ray
27 M_S_DXThe aberration of the sagittal marginal ray (FX = +1.0)
28 M_S_DY The aberration of this ray in the Y direction
29 M_S_COL The chromatic optical path difference of this ray
30 M_SZ_DX The aberration of the sagittal zonal ray (FX = +0.7)
31 M_SZ_DY The aberration of this ray in the Y direction
32 M_SZ_COL The chromatic optical path difference of this ray
For the second off-axis image point (FBY = 1.0)
33 E_XFS The paraxial sagittal focal shift of the pupil ray.
34 E_YFS The paraxial tangential focal shift of the pupil ray.
35 E_DIST\% The percentage distortion at the edge of the field
36 E_PLCThe lateral primary chromatic aberration of the pupil ray
37 E_T_DY The aberration of the top marginal ray ($F Y=+1.0$)
38 E_T_COL The chromatic optical path difference of this ray
39 E_TZ_DY The aberration of the top zonal ray ($\mathrm{FY}=+0.7$)
40 E_TZ_COL The chromatic optical path difference of this ray
41 E_BZ_DY The aberration of the bottom zonal ray (FY = -0.7)
42 E_BZ_COL The chromatic optical path difference of this ray
43 E_B_DY The aberration of the bottom marginal ray (FY = -1.0)
44 E_B_COL The chromatic optical path difference of this ray
45 E_S_DX The aberration of the sagittal marginal ray (FX = +1.0)
46 E_S_DY The aberration of this ray in the Y direction
47 E_S_COL The chromatic optical path difference of this ray
48 E_SZ_DX The aberration of the sagittal zonal ray (FX = +0.7)
49 E_SZ_DY The aberration of this ray in the Y direction
50 E_SZ_COL The chromatic optical path difference of this ray

To use:

1. Type in command: OpC gen [operating_conditions general] Check that the evaluation mode (focal/afocal) of the starting design is correct.
2. Type in command: pxs [paraxial_setup]

Check that the starting design has the desired values of the key
parameters for the four types of optical system:
Objective (infinite-finite, focal)
the effective focal length and entrance beam radius
Reverse objective (finite-infinite, afocal)
the effective focal length and object numerical aperture Relay (finite-finite, focal)
the paraxial magnification and object numerical aperture
Telescope (infinite-infinite, afocal)
the paraxial angular magnification and entrance beam radius
3. Type in command rpt_ric ray 000 [ray intercept report graphic]
Check that at least part of the pupil is traced for each of the three default field points (axis, 0.7 and full field).
4. Then call by typing the command opic (or e.g. opic 0.5 - the number scales the relative weights of all chromatic ray aberrations; the default value for colour_weight is 1.0)
5. For focal systems:

Check that the target on operand 2 is the target numerical aperture (PU) required, and that the target on operand 9 is the target overall lens length (OALL).
If equivalent focal length (EFL) is to be controlled, check that the target for operand 10 is the value required and assign a weight. For afocal systems:
Check that the target on operand 1 is the paraxial marginal ray height ($\mathbf{P Y}$) for the desired magnification. Also check that the target on operand 9 is the desired overall lens length (OALL). If angular magnification is to be controlled, check that the target for operand 10 is the value (AMAG) required, and assign a weight.
6. Define some variable parameters (command vse) such as curvatures.
7. Type in command ite (or click on Ite in the text window header.

Exceptions:

1. The mid-field distortion value is incorrect for ray aiming mode $=$ "wide angle".
2. If the aperture is expressed as image space NA or controlled by an angle solve on the last curve, the PU control will not be effective - weight the EFL instead.
